

Tutorial Series

Wälzlagerberechnung - Starter Essential Bedienung - Einstellungen - Resultate

Inhalt

In diesem Tutorial sollen die wichtigsten Funktionen der Software MESYS Wälzlagerberechnung in praktischer Weise aufgezeigt werden. Die verwendete MESYS Version ist 12-2024.

Allgemein

Bitte entnehmen Sie die Inhalte für die Einstellungen in Reiter 'Allgemein' aus entsprechender Stelle des <u>Online-Handbuches</u>.

Belassen Sie für die Betrachtungen dieses Tutorials nach Start der Wälzlagerberechnung die Standard-Einstellungen.

Schlussfolgerung, ErkenntnisAufforderung

Allgemein Wälzlagergeometrie Lagerkonfigura	tion Werkstoff und Sc	hmierung	Belastun	g Stützrollen	
			Wäl	zlagerberechnung	
rojektname					
Seschreibung					
Zuverlässigkeit	S	10	% Ber	echnung für mittleres Spiel	~
Grenzwert für alSO	alSOMax	i0	Wa	zkörper hat maximale Temperatur	
Reibwert	μ	0.1	Erst	er Wälzkörper auf y-Achse	~
Schmierfilmdicke berechnen			Kre	selmoment wird nicht berücksichtigt	
Fliehkraft berücksichtigen			Die	Lebensdauer des Wälzkörpersatzes wird nicht berechnet	
Temperaturgradient in Passungen berücksichtigen	1		Elas	tische Aufweitung der Ringe wird nicht berücksichtigt	~
Oszillierendes Lager				astkollektiv verwenden	
Erforderliche Einhärtetiefe berechnen			E	rweiterte Lebensdauer berechnen	
Erforderliche Einhärtetiefe aus Dauerfestigkeit			🗆 E	rweiterte Methode für Pressungsberechnung	
Erforderliche Sicherheit für Einhärtetiefe	Ssmin 1			tatischen Sicherheitsfaktor über Pressung berechnen	Bild

Wälzlagergeometrie

Sie haben hier die Möglichkeit, ein Wälzlager direkt aus der Software-Datenbank bezüglich Bauform und Filter für Durchmesser zu wählen.

Bild 3			Optionen für ausgewählten Wälzlagertyp X
Allgemein Wälzlagergeometrie Lagerkonfiguration	Werkstoff und Schmierung Belastung Stützrollen		🔲 Wälzlager mit Füllnut
Schrägkugellager	Eingabe der Innengeome	etrie und der Tragzahlen 🗸 🗸 🗸	Welle ist Lagerinnenring
Innendurchmesser	d 40 mm Dynamische Tragzahl	Cr 0 kN	Gehäuse ist Lageraussenring
Auszendurchmerzer	D 00 mm 👍 Statische Tragzahl	C0r 0 kN	Ringdurchmesser für die Berechnung des Presssitzes aus äquivalentem Querschnitt
Aussendurchmesser			Tragzahlen f ür Hybridlager automatisch berechnen
Lagerbreite	B 0 mm Ermudungsgrenzbelastun		Tragzahlen für Hybridlager berechnen
Anzahl Wälzkörper	Z 0 Lagerspiel	Eigene Eingabe als Betriebsspiel 🗸	X/Y-Faktoren auf Basis des freien Druckwinkels berechnen
Durchmesser Wälzkörper Parameter für	Dw 0 mm 🚍 Axialspiel	Pa 0 µm	Lage des Druckwinkels v
Teilkreis	Dpw 0 mm 🔀	Berechnung von Axialspiel Pa ×	Zulässiges Längenverhältnis Druckellipse 100 %
Druckwinkel	α 0 • 🔂	Avialspiel pach Montage Ram -0.00737327 mm	Minimale Pressung für die Ausdehnung der Druckellipse pmin(eLR) 1 MPa
Konformität Innenring	f Axialspiel (Pa) in	Effektives aviales Lagersniel Paeff -0.00737327 mm	Formzahl für Trunkierung cTr 1.8
Kanfamilith Aussian	/ widispici (i d) iii	circuites axiales engelspier rueit	ISO Schmiegungen im Falle kleiner Schmiegungen verwenden
C h h h m h	🖫 Funktion der Vor-	Vorspannkraft Fp 1000 N 💿	Grenzwert für die Konformität für die dynamische Tragzahl f_limCr 0.515
Schulternone Innenring	asi	Vorspannkraft unmontiert Fpu 902.075 N O	Grenzwert für die Konformität für die statische Tragzahl f_limC0r 0.515
Schulterhöhe Aussenring		Vorspannkraft montiert Fpm 1000 N O	Reibwert für Montage µfit 0.1
		Effektive Vorspannkraft EnEff 1001.56 N	Deduktion des Terrechterfangel des Mitte gewähr Marie

Lagerkonfiguration

Ein generisches Schrägkugellager 7308B soll gepaart werden oder als 2-reihiges Lager gleicher Bauart betrachtet werden:

OK Abbrechen

Wählen Sie das generische 7308B und Aktivieren Sie "Lagersatz berücksichtigen", vergeben Sie die Positionen und Lagen der Druckmittelpunkte mittels Zufügen von Zeilen über die Schaltfläche 🕂 , gemäss Bild 4.

Werkstoff und Schmierung

					Extras H	line				
Allgemein Wälzlagergeome	trie Lagerkonfiguration	Werkstoff	und Schmieru	ing Bel	astung Stüt	the				
Werkstoff		1			U Dater	nbank 🕨	Werkstoff			
Oberflächenhärte Innenring	Notwendig für	58	B H	IRC	Oberflächenhärte Auss	senring		58	HR	C
Kernfestigkeit Innenring	Berechnung	Rm 12	200	ЛРа	Kernfestigkeit Aussenri	ing Erv	weiterbare	Rm 120	DO MP	a
Einhärtetiefe Innenring	Schmierfilm-	hdi 0	n	nm	Einhärtetiefe Aussenrin	ng Ma	aterialdaten-	hde 0	mr	n
Oberflächenrauheit Innenring	Dicke	Rq 0.	119202 µ	ım 🚖	Oberflächenrauheit Au	ssenring ba	nk	Rq 0.1	19202 µm	1
Oberflächenrauheit Wälzkörp	2r	Rq 0.	.119202 µ	ım 😭	Werkstoff Wälzkörper	Steel			~	- 4
Werkstoff Innenring Steel	Erweiterbare			~ 💠	Werkstoff Aussenring	Steel			~	- 4
Werkstoff Welle Steel	Schmierstoff-			~ 🕂	Werkstoff Gehäuse	Eigene Eingab	e		~	1
Schmierung	Datenbank						🔞 Werkstoffdaten fü	r Gehäuse	G	ł
ISO VG 220 mineral oil		-		~	Ölschmierung mit Ha	auptstromfilterr	Elastizitätsmodul Geh Querkontraktionszahl	äuse 💙 Gehäuse	E_h 20700 nu_h 0.3	xol
Viskosität bei 40°C	Extras Hilfe		220	mm²/s	Temperatur		Dichte Gehäuse		rho_h 7850	k
Viskosität bei 100°C			19	mm²/s	Dichte des Öls		Therm. Ausdehnungs Wärmeleitfähigkeit Ge	Therm. Ausdehnungskoeffizient Gehäuse alphaT_h 11 Wärmeleitfähigkeit Gehäuse λ_h 42		
					Druck-Viskositäts-Koe	effizient			ОК	Abbrec
5	Lizenz Tools hdi 0 Schmi	erung								

OK Abbrechen

Belastung

┢ Für jede Koordinatenrichtung kann je nach Bedarf eine Kraft oder ein Weg (ux) eingegeben werden (Bild 6). Soll der Ring mit welchem vorgespannt wird, an unserem Schrägkugellager so wie angenommen festgehalten werden, kann die Verschiebung in axialer Richtung (ux) auf null gesetzt werden und es wird die Reaktionskraft in axialer Richtung (Fx) berechnet.

Eine Momentbelastung oder eine Verkippung kann nur für zwei Richtungen eingegeben werden, da die Drehung um die Lagerachse (X) nicht eingeschränkt werden kann.

Allgemein	Wälzlagergeometrie	Lagerkonfiguration	Werkstoff u	und Schmierung	Belastu	ng Stützrollen					Bild 6
Axialkraft			Fx	100 N	Ver	chiebung			ux	0.34088] µm ()
Radialkraft			Fy	0 N	Ver	schiebung		Ŷ	uy	0] mm ()
Radialkraft			Fz	5000 N	Ver	schiebung	Kraft or	der Weg	uz	0.0267872	mm O
Moment			My	3.52404 Ni	m 🔿 Kip	pwinkel			ry	0	mrad 🖲
Moment			Mz	0 Ni	m 🔿 Kip	pwinkel			rz	0	mrad 🖲
Drehzahl In	nenring		ni	550 rp	m 🗹	Innenring rotiert zu	ır Last				
Drehzahl A	ussenring		ne	0 rp	m 🗆	Aussenring rotiert	zur Last				
Temperatur	Innenring		Ti	20 °C	Ten	nperatur Aussenrin	g		Te	20]•c

Berechnung

Mittels der Schaltfläche 🥵 , Taste F5 oder des entsprechenden Menüpunktes kann die Berechnung ausgeführt werden.

Berechnung Protokoll Grafiken Extras Hi Berechne

Bitte beachten Sie jeweils das Symbol unten rechts welches eine ausgeführte und aktuelle Berech-0 nung bestätigt.

Vergeben Sie Belastungen gemäss Bild 6 und starten Sie die Berechnung mit einem Axialspiel Pa = 0 mm.

			_	
Axials	iel P	a	0	μm

Resultate

Resultateübersicht

Diese bietet am unteren Rand der Bedieneroberfläche zahlreiche Informationen über den Zustand des Wälzlagers. Bild 7

den Menüpı	unkt E	xtras ed	itie	
ren.	Extras			
	🥮 Sp	Sprache		
	Ei	nheitensystem		
	3 D	atenbank		
	🛞 R	esultateübersicht		

Resultateubersicht							C'
Modifizierte Referenzlebensdauer	Lnmrh	431669	h	Maximale Pressung	pmax	1825.53	MPa
Statischer Sicherheitsfaktor	SF	12.1782		Statischer Sicherheitsfaktor (ISO 17956)	S0eff	12.2561]
Äquivalente Belastung	Pref	4897.41	Ν	Dynamische Tragzahl, System	Crsys	63422.8	Ν
Statische Tragzahl, System	C0rsys	53322.6	Ν	Viskositätsverhältnis	к	1.74593	
Effektives diametrales Lagerspiel	Pdeff	0.26203	mm	Effektives axiales Lagerspiel	Paeff	0	mm
Maximum Bohr- zu Roll-Verhältnis	maxSpinToRoll	0.216789		Maximale Differenz der Druckwinkel	Δα	31.1473	•
Referenzlebensdauer	L10r	2171.89		Längenverhältnis Druckellipse Innenring	eLR_i	151.673	%
Längenverhältnis Druckellipse Aussenring	eLR_e	154.469	%	Ausdehnung der Druckellipse Innenring	dCimax	57.7444	mm
Ausdehnung der Druckellipse Aussenring	dCemin	73.6787	mm	Effektiver freier Druckwinkel	α0eff	40	•

Grafiken

Über den Menüpunkt 'Grafiken' lassen sich zahlreiche grafische Darstellungen laden:

Die Inhalte lassen sich über

Öffnen Sie die Grafiken Lastverteilung 3D, Pressungsverteilung, Schubspannungsverlauf und Zuverlässigkeit gemäss Bild 9.

irafiken Extras Hilfe	Pressung und Gleitgeschwindigkeit auf grösserer Halbachse	Bild 8
Lagerkonfiguration	Wärmeleitwert	
Lastverteilung	Wälzkörperkräfte	
Lastverteilung 2D	Zuverlässigkeit	
Lastverteilung 3D	Schubspannungsverlauf	
Lastverteilung 3D (ohne Ringe)	Orthogonale Schubspannung (Innenring, kleinere Halbachse)	
Pressungsverteilung	Orthogonale Schubspannung (Aussenring, kleinere Halbachse)	
Druckwinkel	Orthogonale Schubspannung über Tiefe	
Bohr- zu Roll-Verhältnis	Orthogonale Schubspannung über kleinere Halbachse	
Maximale Spaltweite Kugel-Laufbahn	Kontaktabmessungen	
Kugelumlaufgeschwindigkeit	Lebensdauer über Last	suna
Kugelvor-/nachlauf	Verschiebungen über Last	Song
Gyroskopischer Schlupfkoeffizient	Kippwinkel über Last	terheitsfaktor (ISO 17956)
Verschleissgrösse QV	Grenzlastdiagramm	ragzahl, System
Verschleissgrösse PVmax	Verformung der Lagerringe	Verformung der Lagerringe 2D
Verschleisskenngrösse PV über grösserer Halbachse	Radiale Aufweitung der Laufbahnen	Verformung der Lagerringe 3D
Pressung und Gleitgeschwindigkeit auf grösserer Halbachse	s maxSpinToRoll 0.184671 Maximale D	Verformung der Lagerringe 3D (animiert) Verformung der Lagerringe

Deaktivieren Sie den Haken für 'Lagersatz berücksichtigen' (Bild 4).

Ziehen Sie die Grafiken wie in Bild 15 gezeigt in den unteren Bereich neben die Resultateübersicht.

Resultateübersicht	Bo	hr- zu Roll-Verhältnis	ē ×	Lebensdauer über Last	ē ×	Lastverteilung d	×	Druckwinkel	₽×		
Modifizierte Referenzlebensdauer	Lnmrh 90067.3	h	this	Bohr- zu Roll-Ve	erhältnis ussenring	Lebensdauer 100%: Fx = 5kN Fy =	über Last 0kN Fz = 4	3000MPa 2000MPa		- 60	nkel
Maximale Pressung	pmax 2146.22	MPa	(arhă	0.3	nenring	도 1e+07-	-Lnmrh	00		2 45 Greense	(innen)
Statischer Sicherheitsfaktor	SF 7.49423]	Roll-V	0.2		Te+06		-Innen		S 30 Grenze	MUSSER
Statischer Sicherheitsfaktor (ISO 17956)	S0eff 7.52085]	- 21	0.1			-	-Ausse) //	Ê 15	
Äquivalente Belastung	Pref 4319.36	N	Bob	200 120 100 100 100 100 100 100 100 100	250 300 350+	80 40 50	120		1	201201 201100 201100 201100 201100 201100 201100	250 300
Viskositätsverhältnis	к 3.59395			Position der Ku	ugel [°]	Belastun	g [%]			Position der K	(ugel [°]
Bild 15							3			м	1

Verändern sie die Eingaben unter 'Belastungen' und betrachten Sie die Veränderungen auf den Grafiken.

Aktivieren Sie das Lastkollektiv und setzen Sie den entsprechenden Haken unter dem Reiter 'Allgemein' (Bild 1).

														Bild 16
\Rightarrow	Geben Sie durch Hinzufügen mittels der Schaltfläche 🖶 ein Lastkollek- tiv gemäss Bild 16 ein	AI	gemein	Wälz	lagerg	jeomet	rie L	.agerkonfig	uration	Werkstof	f und Schm	nierung	Belastu	i <mark>ng</mark> Stü
			Häufigk	eit F	x [N]	Fy [N]	Fz [N]	ry [mrad]	rz [mrad]	ni [rpm]	ne [rpm]	T_i [°C]	T_e [°C]	TOil [°C]
	the gennuss blid to entit		1 0.333333	5	000	0	4500	0	1	1500	0	20	20	70
			2 0.333333	5	500	0	5000	0	1	1600	0	22	20	70
	Resultate für Nr 1 📮 🛑 🗱 🐽 📻		3 0.333333	6	000	0	5500	0	1	1700	0	24	20	70

Vergleichen Sie die Resultate in der Resultateübersicht und in den Grafiken über die 3 Lastkollektiv-Elemente.

MESYS wünscht Ihnen eine lehrreiche und gewinnbringende Erfahrung mit unseren Tutorials. Bitte wenden Sie sich ungehindert bei Unklarheiten, Anregungen oder Fragen, an <u>info@mesys.ch</u>.